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1. Problem: Find all pairs of positive integers m and n such that the centres of the
unit squares in a m by n grid of unit squares can be paired up so that the distance
between the centres of each pair is exactly 2.

(A unit square has side length 1.)

Solution: (Tony Wang)
We will show that the answer is all pairs (a, b) where either a or b (or both) is a
multiple of 4. First, partition the grid into four subgrids A, B, C, and D

A B A B A B

C D C D C D

A B A B A B

C D C D C D

Note that, for any given square s, all the square centres that are exactly 2 away from
the centre of s are in the same partition as s itself. This means that s must be paired
with some square which is in the same partition as itself. Hence, each partition of
squares must have an even number of squares. Meanwhile, if each partition of
squares has an even number of squares, one of the dimensions of the subgrid must
be even, and hence we can pair up the squares along that even dimension.

Hence, it suffices to find all values of a and b which create four subgrids which all
have an even number of squares. Consider a modulo 4: if a ≡ 0 (mod 4), then all
subgrids will have an even dimension along the axis of a. Otherwise, at least one of
the subgrids will have an odd dimension along the axis of a. The same reasoning
holds for b. Hence, if neither a nor b are multiples of 4, then one of the partitions
will have an odd number of squares. However, if either a or b is a multiple of 4, then
all partitions will have an even number of squares. Hence, we have shown that the
answer is all pairs (a, b) where either a or b (or both) is a multiple of 4.

2. Problem: For which positive integers n, does there exist a sequence of real num-
bers (x1, x2, . . . , xn) such that

� −2 < xi < 2 for all i,

� x1 + x2 + x3 + · · ·+ xn = 0, and

� x4
1 + x4

2 + x4
3 + · · ·+ x4

n ⩾ 32.

Solution: (Eric Liang)
Note that if n = j works then n > j also works for a positive integer j as we can
just set xi = 0 for n ≥ i > j and have x1, . . . , xn be the sequence that worked for n.

Consider n = 4. We take x1, x2 = 4
√
8 and x3, x4 = − 4

√
8 and all conditions are

satisfied. Thus all n ≥ 4 works.



Now if n = 2, we note |x1|, |x2| < 2 and thus x4
1, x

4
2 < 16 so x4

1 + x4
2 < 32. Contra-

diction.

If n = 3, then wlog x1, x2 ≥ 0 and x3 ≤ 0 (as flipping the signs won’t affect any of
the conditions).

Now as x1 + x2 = −x3 < 2, we get that (x1 + x2)
4 < 16. But if we expand this out

we get 16 > (x1 + x2)
4 = x4

1 +4x3
1x2 +6x2

1x
2
2 +4x1x

3
2 + x4

2 ≥ x4
1 + x4

2 (as x1, x2 ≥ 0).

Thus x4
1+x4

2 < 16 but also note that x4
3 < 16, thus x4

1+x4
2+x4

3 < 32. Contradiction.

Thus, a sequence only exists for integers n ≥ 4.

3. Problem:

Let ABC be an acute scalene triangle with AC > BC > AB. Let the orthocentre
be H and circumcentre be O. Suppose that lines BO and CH intersect at a point
D. Point E (where E ̸= C) lies on side AC so that OECD is cyclic. Point F (where
F ̸= C) lies on side BC such that CE = FE. Prove that BHDF is cyclic.

(The orthocentre of a triangle is the point of intersection of its altitudes.)

Solution: (Nico McKinlay & George Zhu)

Let α = ∠BAC. Let BB′ and CC ′ be altitudes in triangle ABC, as shown.

A

B C

O

H

B′

C ′

D

E

F

Claim. Triangle CDE is isosceles with CE = DE.

Proof.
∠DEC = ∠DOC (OECD cyclic)

= ∠BOC

= 2∠BAC (angle at centre/circumference)

= 2α

∠DCE = ∠C ′CA = 90◦ − ∠C ′AC (angles in △C ′CA)

= 90◦ − α



∠CDE = 180◦ − ∠DEC − ∠DCE (angle sum in △CDE)

= 180◦ − 2α− (90◦ − α)

= 90◦ − α

= ∠DCE.

Since CE = DE and CE = FE, we have CE = DE = FE, therefore E is the
circumcentre of triangle CDF . Consequently,

∠HDF = 180◦ − ∠CDF (angles on a line)

= 180◦ − 1
2
· ∠CEF (angle at centre/circumference)

= 180◦ − 1
2
· (180◦ − 2∠ECF ) (angle sum in isosceles △CEF )

= 180◦ − 1
2
· (180◦ − 2∠B′CB)

= 180◦ − (90◦ − ∠B′CB)

= 180◦ − ∠B′BC (angles in △B′BC)

= 180◦ − ∠HBF

so BHDF is cyclic.

4. Problem: The function rn(x) is the remainder when x is divided by n, where
0 ≤ rn(x) < n. For which n does there exists some ordering {a1, . . . , an−1} of
{1, 2, . . . , n−1} such that {rn(a1), rn(2×a2), , . . . , rn((n−1)×an−1)} is an ordering
of {1, 2, . . . , n− 1}?

(An ordering of {1, 2, . . . , n − 1} is the sequence of numbers 1 to n − 1 in some
order.)

Solution: (James Xu)

Notice that rn(x) is just x modulo n. Therefore∏
i

rn(iai) ≡
∏
i

iai (mod n)

For primes p, apply Wilson’s theorem to see that we must have∏
i

iai ≡ −1 (mod p)

However, ∏
i

iai =
∏
i

i
∏
i

ai ≡ −12 ≡ 1 (mod p)

So the only possibility in that case is p = 2.

Now, if n is composite, then let n be the minimal solution. Let n = pq for prime
p. Notice that we must have (p − 1)q numbers in {a1, 2a2, 3a3, . . . , (n − 1)an−1}
not divisible by p. The q − 1 numbers of the form (kp)akp are divisible by p and
there are only q− 1 multiples of p in {1, 2, . . . , pq− 1}. Therefore they must be the
only numbers divisible by p, so {akp|1 ≤ k < q} = {kp|1 ≤ k < q}. Now, p ∤ q as
otherwise all of (kp)akp are multiples of p2, which is not true.

Let c ≡ 1
p
(mod q). Consider {ap

p
, a2p

p
, . . . ,

a(q−1)p

p
} = {1, 2, . . . , q − 1}.



Then,

{ap
p
,
2a2p
p

, . . . ,
(q − 1)a(q−1)p

p
} = {pap

p2
,
2pa2p
p2

, . . . ,
(q − 1)pa(q−1)p

p2
}

≡ c{1, 2, 3, . . . , q − 1} (mod q)

As (kp)akp ≡ k′p (mod pq) for some k′, and kakp ≡ k′ (mod q)

Since gcd(c, q) = 1

c{1, 2, 3, . . . , q − 1} ≡ {1, 2, 3, . . . , q − 1} (mod q)

in some order. This is a solution for n = q, which contradicts the minimality of the
solution for n = pq. Therefore no such solution n = pq can exist.

Hence, n = 2 is the only solution.

5. Problem: Let a, b, c be positive real numbers satisfying abc = 1. Determine the
smallest possible value of

a2 + 2025

a3(b+ c)
+

b2 + 2025

b3(c+ a)
+

c2 + 2025

c3(a+ b)

Solution: (Eric Liang)

Note,

1

a3(b+ c)
+

1

b3(a+ c)
+

1

c3(a+ b)
=

( 1
a
)2

a(b+ c)
+

(1
b
)2

b(a+ c)
+

(1
c
)2

c(a+ b)

≥
( 1
a
+ 1

b
+ 1

c
)2

2(ab+ ac+ bc)
(Cauchy-Schwarz)

=
( 1
a
+ 1

b
+ 1

c
)2

2(1
c
+ 1

b
+ 1

a
)

(abc = 1)

=
( 1
a
+ 1

b
+ 1

c
)

2

≥ 3

2 3
√
abc

(AM-GM)

=
3

2

Now, (a+ b+ c)2 ≥ 3(ab+ ac+ bc) for positive reals a, b, c. (†)

So we also get,

1

a2(b+ c)
+

1

b2(a+ c)
+

1

c2(a+ b)
≥

( 1
a
)2

(b+ c)
+

(1
b
)2

(a+ c)
+

(1
c
)2

(a+ b)

≥
( 1
a
+ 1

b
+ 1

c
)2

2(a+ b+ c)
(Cauchy-Schwarz)

=
( 1
a
+ 1

b
+ 1

c
)2

2(1
b
· 1
c
+ 1

a
· 1
c
+ 1

a
· 1
b
)

(†)

≥ 3

2



Finally, as a2 + 1 ≥ 2a, we get

a2 + 2025

a3(b+ c)
+

b2 + 2025

b3(a+ c)
+

c2 + 2025

c3(a+ b)
≥ 2a+ 2024

a3(b+ c)
+

2b+ 2024

b3(a+ c)
+

2c+ 2024

c3(a+ b)

≥ 2 · 3
2
+ 2024 · 3

2
= 3039

Equality can be achieved when a = b = c = 1.
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