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NZMO Round One 2025 — Solutions

1. Problem: Let a and b be positive integers with no common factor greater than
1. What are the possible values for the greatest common divisor of (a + b) and
(a− b)?

Solution: (Kevin Shen)

Let d be a common divisor of both (a+ b) and (a− b), and therefore divides linear
combinations of (a+ b) and (a− b). In particular,

d |
[
(a+ b) + (a− b)

]
= 2a, d |

[
(a+ b)− (a− b)

]
= 2b.

As a and b don’t share any common factors, the only common factors 2a and 2b
have is 2. Hence d | 2, which means that d = 1 or 2. This means that the greatest
common divisor cannot be larger than 2.

We now show that both 1 and 2 can both occur.

Consider a = 2, b = 1
gcd(2 + 1, 2− 1) = 1.

Consider a = 5, b = 3
gcd(5 + 3, 5− 3) = 2.

Thus the only possible values for the greatest common divisor of (a+ b) and (a− b)
are 1 and 2.



2. Problem: Let ABC be a right-angled triangle with ∠BAC = 90◦, ∠ABC = 70◦,
and AB = 1. Let M be the midpoint of BC. Let D be the point on the extension
of AM beyond M such that ∠CDA = 110◦. Find the length of CD.

Solution: (Nico McKinlay)

Construct point E so that ABEC is a rectangle. The diagonals of any rectangle
bisect each other, that is, they meet at each other’s midpoints. Hence AE and BC
meet at M , i.e. E lies on line AM .

A

C

B
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D

70◦

110◦

By symmetry in rectangle ABEC, we have

∠CEA = ∠ABC = 70◦.

By angles on a line,

∠CDE = 180◦ − ∠CDA = 180◦ − 110◦ = 70◦.

So triangle CDE is isosceles with CD = CE, because

∠CED = ∠CDE = 70◦.

Opposite sides in a rectangle are equal so CE = AB = 1, hence CD has length 1.



3. Problem: Let P (x) = x3+ax2+ bx−8 be a polynomial with 3 real roots. Show
that a2 ≥ 2b+ 12.

Solution: (Eric Liang)

Let α, β, γ be the roots of the polynomial. By expanding P (x) = (x−α)(x−β)(x−γ)
we get:

a = −α− β − γ

b = αβ + βγ + γα

−8 = −αβγ

Using these results:

a2 = (−α− β − γ)2

= α2 + β2 + γ2 + 2αβ + 2βγ + 2γα

= α2 + β2 + γ2 + 2b

≥ 3 3
√
α2β2γ2 + 2b (AM-GM Inequality)

= 3 3
√

(−8)2 + 2b

= 2b+ 12

As required.

4. Problem: Find the largest integer k such that any string of 2025 letters consist-
ing only of A’s and B’s contains a palindromic substring of length k or longer.
A palindromic substring is a string of consecutive letters which reads the same back-
wards as forwards.

Solution: (Kevin Shen)

We claim that the largest integer is 4. We first prove that all strings S of 2025
letters contain a palindromic substring of length 4 or longer, which implies that
k ≥ 4. Then we shall provide a construction to show that k cannot be 5 or more.

We first begin by proving k ≥ 4. Let R be the 2023 letter substring of S with the
first and last letter removed.

Case 1: R contains a letter that is repeated 4 or more times in a row.

This repeating letter (e.g. AAAA) is a palindromic substring or length 4 or
more, so we are done.

Case 2: R contains a letter that is repeated 3 times in a row, and no more.

Without loss of generality, assume this repeated letter is A. As it repeats
only 3 times in a row, the letters immediately to the left and right of the
substring AAA must be B, therefore S contains the substring BAAAB, which
is palindromic with length 5 > 4.



Case 3: R contains a letter that is repeated 2 times in a row, and no more.

Without loss of generality, assume this repeated letter is A. As it repeats only
2 times in a row, the letters immediately to the left and right of the substring
AA must be B, therefore S contains the substring BAAB, which is palindromic
with length 4.

Case 4: R does not contain a letter that is repeated in a row.

As no letter repeats, R must alternate between A and B. Therefore it contains
the substring ABABA, which is palindromic with length 5 > 4.

This proves that k ≥ 4.

We now provide a construction that does not contain palindromic substrings of
length 5 or more. Consider the following sequence of length 2025 built from repeat-
ing the 6 letters AABABB.

AABABB AABABB AABABB...

There are only 6 possible five letter substrings as the sequence repeats every 6 letters,
none of these substrings are palindromic.

AABAB, ABABB, BABBA, ABBAA, BBAAB, BAABA

Similarly the six letter substrings are all not palindromic either.

AABABB, ABABBA, BABBAA, ABBAAB, BBAABA, BAABAB

Any longer palindromic substring of odd length must contain a palindromic sub-
string with 5 letters, and any longer palindromic substring of even length must
contain a palindromic substring with 6 letters. As we proved earlier there are no
such substrings, there also cannot be palindromic substrings of length 7 or longer
in our constructed sequence.

5. Problem: Alice plays a game with the Mad Hatter. The Mad Hatter will write
two rows of numbers on a blackboard, each a distinct permutation of {1, 2, . . . , n}.
On each move, Alice is allowed to swap the positions of the numbers a and a + 1
in the first row, for some 1 ≤ a < n. What is the minimum number of moves Alice
needs in order to guarantee that she can turn the first row of numbers into the
second, regardless of the permutations the Mad Hatter writes?

Solution: (Tony Wang)

We will show that the answer is
(
n
2

)
= n(n−1)

2
. To show that this is sufficient, we

will use induction.

• Base Case: Note that when n = 1, the two rows of numbers must be the
same since there is only one permutation of {1}. Hence this case takes 0 =

(
1
2

)
turns.



• Inductive Step: Suppose that we know that it takes
(
n−1
2

)
moves for two per-

mutations of {1, 2, . . . , n−1}. Now consider two permutations of {1, 2, . . . , n}.
We will show that it takes at most n− 1 moves to put the number n into the
correct position.

Suppose that n is in the i-th position in the first row, and that the i-th number
in the second row is occupied by k. We first swap the positions of k and k+1,
meaning that the i-th number in the second row is now k + 1. By repeating
this argument with k + 1 and k + 2, k + 2 and k + 3, . . ., n− 1 and n, we will
have n in the correct position. This takes n − k moves, and since 1 ≤ k ≤ n,
the whole process takes at most n− 1 moves.

Once we have put n into the correct position, we can effectively remove the n
from both rows, since we are able to arrange the rest of the numbers without
touching n again, showing that the problem has now been reduced to the n−1
case. By the inductive hypothesis, the rest of the problem takes at most

(
n−1
2

)
moves.

Hence, the maximum number of moves required is
(
n−1
2

)
+ n− 1 =

(
n
2

)
.

To show that
(
n
2

)
moves are necessary, we note that the Mad Hatter can write

n n− 1 n− 2 · · · 2 1
1 2 3 · · · n− 1 n.

to force Alice to use
(
n−2
2

)
moves. To show this, we define the warp of a permutation

as follows: for each number in the permutation, its distance is the number of numbers
to right of it which are smaller than itself. Then the warp is the sum of the distances
over all the numbers in the permutation.

Note that on each move, the warp of a permutation either increases by 1 or decreases
by one. This is because, if we swap the positions of a and a+1, then the only distance
that can change is the distance of a + 1, and this may only increase by 1 (if a + 1
started on the right) or decrease by 1 (if a+ 1 started on the left).

Now, since the warp of the first row at the start is (n− 1)+ (n− 2)+ · · ·+1 =
(
n
2

)
,

and the warp of the second row at the start is 0, the minimum number of moves
required to turn the permutation n, n− 1, . . ., 1 into the permutation 1, 2, . . ., n is(
n
2

)
.

We have thus proven that the answer is
(
n
2

)
.



6. Problem: Determine the largest real number M such that for each infinite
sequence x0, x1, x2, . . . of real numbers satisfying x0 = 1 , x1 = 3 and

x0 + x1 + · · ·+ xn−1 ≥ 3xn − xn+1 for all n ≥ 1,

the inequality
xn+1

xn

> M

holds for all n ≥ 0.

Solution: (Eric Liang)

We claim that the largest real number M is 2.

First we prove by induction on n that xn

xi
> 2n−i for all i ≤ n− 1.

Base case: For n = 1, x1

x0
= 3 > 2.

Inductive step: Suppose the inductive hypothesis holds true for n = k, i.e. xk

xi
> 2k−i

for all i ≤ k − 1. Then we have that, by the condition in the question,

xk+1 ≥ 3xk − xk−1 − xk−2 − · · · − x0

≥ 3xk −
1

2
xk −

1

4
xk − · · · − 1

2k
xk (Inductive Hypothesis)

> 3xk − xk

= 2xk

≥ 2× 2k−ixi = 2k+1−ixi (Inductive Hypothesis)

Thus we have proven that xk+1

xi
> 2k+1−i for all i ≤ k, i.e. the statement for n = k+1.

Thus by induction it is true for all integers n ≥ 1.

Hence we have shown that M ≥ 2.

Now we claim that there is a sequence x0, x1, . . . satisfying the conditions of the
question such that for any ε > 0 which we can find an n such that xn+1

xn
< 2+ ε. Let

sn = x0 + x1 + · · · + xn−1. Then define the sequence xi such that x0 = 1, x1 = 3,
and xn+1 = 3xn − sn. Note that sn+1 = sn + xn.

We claim that xn = 2n + n × 2n−1 and sn = n × 2n−1. This can be shown by
substituting into the recurrence. Hence

xn+1

xn

=
2n+1 + (n+ 1)× 2n

2n + n× 2n−1

=
4 + 2n+ 2

2 + n

= 2 +
2

n+ 2

and we simply choose n > 2
ε
to complete the proof.



7. Problem: Let ABC be a triangle and let D be a point inside the triangle ABC
such that AD bisects ∠BAC. Let line BD meet side AC at E. Let line CD meet
side AB at F . Let T be the intersection of the (internal) angle bisectors of ∠AED
and ∠AFD. Prove that if T lies on segment AD, then triangle ABC is isosceles.

Solution 1: (Nico McKinlay)

A

B C

D

E
F

A′

T

Assume T lies on AD. Then by the angle bisector theorem in triangles AED and
AFD, we have

AE

ED
=

AT

TD
=

AF

FD
.

Applying the angle bisector theorem in triangles AEB and AFC, we also have:

AE

ED
=

AB

BD

AF

FD
=

AC

CD

Combining all of the above, we get that

AB

BD
=

AC

CD
, i.e.

AB

AC
=

BD

CD
. (1)

Now extend AD beyond D to meet BC at A′. Applying the angle bisector theorem
in triangle ABC, we have

AB

AC
=

BA′

CA′ . (2)

Combining (1) and (2) gives
BD

CD
=

BA′

CA′

By the converse of the angle bisector theorem, this implies DA′ bisects ∠BDC, i.e.,

∠BDA′ = ∠CDA′.

Therefore, by angles on a line, we have

∠BDA = 180◦ − ∠BDA′ = 180◦ − ∠CDA′ = ∠CDA.



Since ∠BAD = ∠CAD, ∠BDA = ∠CDA, and AD = AD, triangles ABD and
ACD are congruent (ASA). Then

△ABD ≡ △ACD =⇒ AB = AC

and we’re done.

Solution 2: (Nico McKinlay)

Label the following angles:

a = ∠EAT = ∠FAT θ1 = ∠EDT

e = ∠AET = ∠DET θ2 = ∠FDT

f = ∠AFT = ∠DFT

Now consider the product

AT

ET
× ET

DT
× DT

FT
× FT

AT
= 1.

By the law of sines (in triangles AET , EDT , DFT and FAT ), this becomes

sin e

sin a
× sin θ1

sin e
× sin f

sin θ2
× sin a

sin f
= 1

which simplifies to sin θ1 = sin θ2. Since D lies inside triangle ABC,

θ1 + θ2 = ∠EDF = ∠BDC = 180◦ − ∠BCD︸ ︷︷ ︸
>0

−∠CBD︸ ︷︷ ︸
>0

< 180◦.

Therefore we have
sin θ1 = sin θ2 =⇒ θ1 = θ2.

i.e. ∠EDA = ∠FDA. We also have ∠BDF = ∠CDE (vertically opposite angles).
Combining these,

∠BDA = ∠BDF + ∠FDA

= ∠CDE + ∠EDA

= ∠CDA.

From here we conclude in the same manner as in Solution 1.



8. Problem: Show that there are infinitely many triples (a, b, c) of positive integers
such that

a2 + b2 + c2 + (a+ b+ c)2 = abc.

Solution: (James Xu)

Note that a = b = c = 12 is a solution. Now, fix c = 12, the original equation
becomes.

a2 + b2 + 144 + (a+ b+ 12)2 = 12ab

⇒ 2a2 + (24− 10b)a+ (2b2 + 24b+ 288) = 0 (1)

We see that by Vieta’s theorem taking (1) as a polynomial in a, there are 2 solutions
of a, adding up to 5b− 12.

Thus, if a ≤ b then we have a new set of solutions: (5b − 12 − a, b, 12), which by
symmetry gives (b, 5b− 12− a, 12) as a bigger set of solutions in a, b (non-strict in
a, strict in b as 5b− 12− a ≥ 5b− b− b = 3b > b) when a, b ≥ 12.

Since we can repeat this process infinitely, as a, b increases they always fulfills the
requirement that a, b ≥ 12, thus we can generate infinitely many solutions.

www.mathsolympiad.org.nz

http://www.mathsolympiad.org.nz

