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NZMO Round One 2020 — Solutions

1. Problem: What is the maximum integer n such that
50!

2n
is an integer?

Solution: 50! = 1×2×3×· · ·×50. Of the numbers up to 50, we need to find how many
of them are divisible by 2k for each k = 1, 2, 3, 4, 5, 6. There are

⌊
50
2k

⌋
numbers which are

divisible by 2k and there are
⌊

50
2k+1

⌋
which are divisible by 2k+1. Therefore there are⌊

50

2k

⌋
−
⌊

50

2k+1

⌋
numbers between 1 and 50 which are divisible by 2 exactly k times. Hence the answer we
are looking for is:(⌊

50
2

⌋
−
⌊
50
4

⌋)
+ 2

(⌊
50
4

⌋
−
⌊
50
8

⌋)
+ 3

(⌊
50
8

⌋
−
⌊
50
16

⌋)
+ 4

(⌊
50
16

⌋
−
⌊
50
32

⌋)
+ 5

(⌊
50
32

⌋
−
⌊
50
64

⌋)
= 13 + 2× 6 + 3× 3 + 4× 2 + 5× 1

= 47.

2. Problem: Let ABCD be a square and let X be any point on side BC between B and
C. Let Y be the point on line CD such that BX = Y D and D is between C and Y .
Prove that the midpoint of XY lies on diagonal BD.

Solution:

A B

C
D

E
X

Y

Construct point E on diagonal BD so that EX is parallel to CD. So ∠BXE = ∠BCD =
90◦. Also ∠XBE = 45◦ because E is on diagonal BD. Therefore triangle 4BEX is an
isosceles right-angled triangle. Hence

EX = BX = Y D.

Since segments EX and Y D are parallel and equal in length, this implies that EXDY
is a parallelogram. Since the diagonals of a parallelogram bisect each other, we deduce
that the intersection of XY and DE is the midpoint of XY . Therefore the midpoint of
XY lies on line DE (which is a segment of diagonal BD).



Alternative Solution A: Let ABCD be the unit square, with A = (0, 1), B = (1, 1),
C = (1, 0) and D = (0, 0). Now let a = BX = DY . This means that X = (1, 1− a) and
Y = (−a, 0). Now let Z be the midpoint of XY . We compute the co-ordinates of Z to
be

Z =

(
1 + (−a)

2
,
(1− a) + 0

2

)
.

The x and y coordinates of Z are equal, therefore Z lies on diagonal BD.

Alternative Solution B: Let s be the side-length of the square and let a = BX = DY .
Let Z be the midpoint of XY . Now we apply the converse of Menelaus’ Theorem to
traversal BZD of 4XY C.

XZ

ZY
× Y D

DC
× CB

BX
= 1× a

s
× s

a
= 1.

Therefore Z, D and B are colinear.

3. Problem: You have an unlimited supply of square tiles with side length 1 and equilateral
triangle tiles with side length 1. For which n can you use these tiles to create a convex
n-sided polygon? The tiles must fit together without gaps and may not overlap.

Solution: All the angles in squares and equilateral triangles are multiples of 30◦. So
all the external angles of the n-sided polygon are multiples of 30◦. Since the polygon is
convex, this implies that all external angles are greater than or equal to 30◦. However,
the sum of the external angles is 360◦, therefore

n× 30◦ ≤ 360◦.

Hence n ≤ 12. Also all polygons have at least 3 sides so 3 ≤ n ≤ 12. Finally we
demonstrate that it is possible for any 3 ≤ n ≤ 12 using the following illustrations.



4. Problem: Determine all prime numbers p such that p2 − 6 and p2 + 6 are both prime
numbers.

Solution: If p > 5 then the units digit of p must be 1, 3, 7 or 9.

• If the units digit of p is 1 or 9 then the units digit of p2 is 1. Therefore the units
digit of p2 − 6 is 5. Since p2 − 6 > 5 this means that p2 − 6 is not prime.

• If the units digit of p is 3 or 7 then the units digit of p2 is 9. Therefore the units
digit of p2 + 6 is 5. Since p2 + 6 > 5 this means that p2 + 6 is not prime.

Therefore we must have p ≤ 5. Hence p must be 2, 3 or 5.

• If p = 2 then p2 + 6 = 10 is not prime.

• If p = 3 then p2 + 6 = 15 is not prime.

• If p = 5 then p2 ± 6 are 19 and 31 which are both prime.

Therefore the only answer is p = 5.

Alternative Solution: Consider the following product modulo 5.

p(p2 − 6)(p2 + 6) = p5 − 36p ≡ p5 − p (mod 5)

By Fermat’s Little Theorem, this product is 0 (mod 5). So if p, p2 − 6 and p2 + 6 are all
prime numbers then at least one of them must be equal to 5.

• If p = 5 then 6p2 − 1 = 29 and 6p2 + 1 = 31. This is one solution.

• If 6p2 − 1 = 5 then p = ±1. Neither 1 nor −1 is prime, so this case leads to no
solutions.

• If 6p2 + 1 = 5 then p is not an integer. No solutions in this case.

Therefore the only solution is p = 5.

5. Problem: Find all functions f : R→ R that satisfy

f(x+ f(y)) = 2x+ 2f(y + 1)

for all real numbers x and y.

Solution: Substitute x = −f(y) into the given equation to get

f(0) = −2f(y) + 2f(y + 1) (1)

We can then substitute y = −1 into (1) to get f(0) = −2f(−1) + 2f(0). Hence

f(−1) =
f(0)

2
. (2)

Also we can substitute y = −2 into (1) to get f(0) = −2f(−2) + 2f(−1). Hence

f(−1) = f(−2) +
f(0)

2
. (3)

Equations (2) and (3) tell us that f(−2) = 0. Now substitute y = −2 into the original
equation to get

f(x+ f(−2)) = 2x+ 2f(−1) =⇒ f(x) = 2x+ 2f(−1).



Therefore our function can be written in the form f(x) = 2x + c, where c = 2f(−1) is a
constant. We can substitute this into the original equation to get

f(x+ f(y)) = 2x+ 2f(y + 1)

⇐⇒ f(x+ (2y + c)) = 2x+ 2(2(y + 1) + c)

⇐⇒ 2(x+ (2y + c)) + c = 2x+ 4y + 4 + 2c

⇐⇒ 2x+ 4y + 3c = 2x+ 4y + 2c+ 4

⇐⇒ c = 4.

Therefore the function f works if and only if c = 4. Hence f(x) = 2x + 4 (for all x) is
the only solution.

Alternative Solution:
Substitute x = z − f(0) and y = 0 into the given equation to get

f((z − f(0)) + f(0)) = 2(z − f(0)) + 2f(1)

f(z) = 2z + (2f(1)− 2f(0)).

Hence f(z) = 2z + c for any real number z, where c = 2f(1)− 2f(0) is constant. Now

f(1)− f(0) = (2 · 1 + c)− (2 · 0 + c) = 2.

Hence c = 2f(1) − 2f(0) = 4. Therefore f(z) = 2z + 4 is the only possible function
satisfying the given equation.

Now need to check that f(z) = 2z + 4 does indeed satisfy the given equation

f(x+ f(y)) = f(x+ 2y + 4) = 2(x+ 2y + 4) + 4 = 2x+ 4y + 12

= 2x+ 2(2(y + 1) + 4) = 2x+ 2f(y + 1).

Hence f(z) = 2z + 4 is the unique function f satisfying the given equation.

6. Problem: Let 4ABC be an acute triangle with AB > AC. Let P be the foot of the
altitude from C to AB and let Q be the foot of the altitude from B to AC. Let X be the
intersection of PQ and BC. Let the intersection of the circumcircles of triangle 4AXC
and triangle 4PQC be distinct points: C and Y . Prove that PY bisects AX.

Solution: Let Z be the point where PY intersects AX. The problem asks us to prove
that AZ = ZX.

B C X

A

P

Z

Y

Q



Since ∠BPC = ∠BQC = 90◦ we conclude that BPQC is a cyclic quadrilateral. Hence
BPY QC is a cyclic pentagon. A quick angle chase gives us:

∠ZPA = 180◦ − ∠BPY (supplimentary)

= ∠BCY (BPCY is cyclic)

= 180◦ − ∠XCY (supplimentary)

= ∠XAY (XACY is cyclic)

= ∠ZAY.

Hence triangles 4ZPA and 4ZAY are similar (∠Z is shared). Therefore ZP
ZA

= ZA
ZY

, and
hence ZA2 = ZP × ZY . Another angle chase gives us:

∠XPZ = ∠QPY

= ∠QCY (BPCY is cyclic)

= ∠ACY

= ∠AXY (ACYX is cyclic)

= ∠ZXY.

Hence triangles 4ZPX and 4ZXY are similar (∠Z is shared). Therefore ZP
ZX

= ZX
ZY

and
hence ZX2 = ZP × ZY . Putting this together gives us:

ZA2 = ZP × ZY = ZX2.

Hence ZA = ZX, and therefore Z is the midpoint of AX.

Alternative Solution (outline):
First we will embed the diagram in the Argand plane, such that point B is represented
by the complex number b = −1 and point C is represented by the complex number c = 1.
Lower case letters will always denote the complex number representing the corresponding
upper case letter (so a is the complex number representing point A and x is the complex
number representing point X, etc). We will endeavour to find expressions for all the
points in the diagram in terms of p and q.

Since ∠BPC = ∠BQC = 90◦, we know that points P and Q both lie on the unit circle.
So pp = qq = 1. Therefore the circumcircle of triangle PQC is the unit circle and thus
yy = 1 too. Since point A is the intersection of chords BP and CQ, we can compute a
using the formula for the intersection of two chords.

a =
cq(b+ p)− bp(c+ q)

cq − bp
=
q(−1 + p)− (−1)p(1 + q)

q − (−1)p
=

2pq + p− q
p+ q

=⇒ a =
2pq + p− q

p+ q
=

(2pq + p− q)pq
(p+ q)pq

=
2 + q − p
q + p

note:
1− a
1− a

=
1− 2pq+p−q

p+q

1− 2+q−p
q+p

=
(p+ q)− (2pq + p− q)
(p+ q)− (2 + q − p)

=
2q − 2pq

2p− 2
= −q.

Similarly X is the intersection of chords PQ and BC, so

x =
pq(b+ c)− bc(p+ q)

pq − bc
=
pq(0)− (−1)(p+ q)

pq − (−1)
=

p+ q

pq + 1



Now we have formulas for a and x in terms of p and q. Next we will use the fact that
AY CX is cyclic to find a formula for y in terms of p and q. AY CX being cyclic is
equivalent to ∠CAY = ∠CXY . This is equivalent to(

c− a
c− a

) / (
y − a
y − a

)
=

(
c− x
c− x

) / (
y − x
y − x

)
To simplify this, first recall that c−a

c−a
= 1−a

1−a
= −q. Also, since c = c and x = x (c and x

are real numbers) the c−x
c−x

factor is 1. Furthermore, since yy = 1 we can replace y with
y−1. Thus the equation for AY CX being cyclic becomes:

(−q)
/ (

y − a
y−1 − a

)
= 1

/ (
y − x
y−1 − x

)
.

From here, We can multiply out the denominators, expand the brackets and collect like
terms to get a quadratic in y.

(qa+ x) y2 − (qax+ q + xa+ 1) y + (qx+ a) = 0.

Now (using 1−a
1−a

= −q) we can get (qa + x + qx + a) = (qax + q + xa + 1). Thus the
quadratic factorises as: (

y − 1
)(

(qa+ x)y − (qx+ a)
)

= 0.

Since Y and C are distinct points, we know y 6= 1 and so we finally get a formula for y

(qa+ x)y − (qx+ a) = 0 =⇒ y =
qx+ a

qa+ x

We can now subsitute our formulas for a and x (a = 2pq+p−q
p+q

and x = p+q
pq+1

) into this
expression to find y in terms of p and q. After some algebraic simplification this yields:

y =
2p2q + (q + 1)p+ q2 − q

(1− q)p2 + (q + q2)p+ 2q
.

Let M be the midpoint of AX. So

m =
a+ x

2
=

2pq+p−q
p+q

+ p+q
pq+1

2
=

(pq + 1)(2pq + p− q) + (p+ q)2

2(p+ q)(pq + 1)
.

m =
(pq + 1)(2 + q − p) + (p+ q)2

2(p+ q)(pq + 1)
.

pm− 1 =
(p− 1)((1− q)p2 + (q + q2)p+ 2q)

2(p+ q)(pq + 1)

y(pm− 1) =
(p− 1)(2p2q + (q + 1)p+ q2 − q)

2(p+ q)(pq + 1)

y(pm− 1) +m =
(p− 1)(2p2q + (q + 1)p+ q2 − q)

2(p+ q)(pq + 1)
+

(pq + 1)(2pq + p− q) + (p+ q)2

2(p+ q)(pq + 1)

=
(p− 1)(2p2q + (q + 1)p+ q2 − q) + (pq + 1)(2pq + p− q) + (p+ q)2

2(p+ q)(pq + 1)

=
2p3q + 2p2q2 + 2p2 + 2pq

2(p+ q)(pq + 1)

= p.

We have shown that y(pm− 1) +m = p. Hence

m = p+ y − pym.

Which interpeted geometrically means that point M lies on chord PY of the unit circle.



7. Problem: Josie and Ross are playing a game on a 20 × 20 chessboard. Initially the
chessboard is empty. The two players alternately take turns, with Josie going first. On
Josie’s turn, she selects any two different empty cells, and places one white stone in each of
them. On Ross’ turn, he chooses any one white stone currently on the board, and replaces
it with a black stone. If at any time there are 8 consecutive cells in a line (horizontally
or vertically) all of which contain a white stone, Josie wins. Is it possible that Ross can
stop Josie winning — regardless of how Josie plays?

Solution: Ross can’t stop Josie winning — Josie has a strategy in which she can ensure
that there will be 8 white stones in a row. We will give an explicit example of such a
strategy.

To simplify notation, we define a k-strip to be a 1× 8 rectangle, in which the first k cells
are filled with white stones and the other 8− k cells are empty.

• Step One. Josie creates 32 disjoint 1-strips using the following technique.

Start by finding 44 disjoint 1× 9 retangles on the board.

– Josie places a white stone in one end of each of these 44 rectangles on her first
22 turns.

– Ross “ruins” 22 of them. Each of the other 22 rectangles are 1-strips (by ignoring
the empty end cell).

– On Josie’s next 10 turns she then chooses 20 of the ruined 1 × 9 rectangles,
and “unruins” them by placing a white stone in the other end. These are now
1-strips (by ignoring the cell containing the black stone).

– However Ross “ruins” a further 10 of them. So in total we have

22 + 20− 10 = 32 disjoint 1-strips.

• Step Two. Repeat the following operation for k = 1, 2, 3, 4, 5.
Starting with 26−k disjoint k-strips. Josie can use her next 25−k turns to add one
white stone to each of these strips. On Ross’ next 25−k turns he can spoil at most
25−k of them. So we are left with at least 25−k disjoint (k + 1)-strips.

• Step Three. Now we have at least one 6-strip. Josie wins immediately by placing
both her white stones into the empty cells in the 6-strip.



8. Problem: For a positive integer x, define a sequence a0, a1, a2, . . . according to the
following rules: a0 = 1, a1 = x+ 1 and

an+2 = xan+1 − an for all n ≥ 0.

Prove that there exist infinitely many positive integers x such that this sequence does not
contain a prime number.

Solution: For each integer n ≥ 0 and x > 2, we recursively define integers an(x) and
bn(x). Let a0(x) = b0(x) = 1 and a1(x) = x+ 1 and b1(x) = x− 1. For all n ≥ 0 let

an+2(x) = xan+1(x)− an(x) and bn+2(x) = xbn+1(x)− bn(x).

So for constant x, the sequences (an and bn), both satisfy the same recurrence but have
different initial conditions. The chracteristic polynomial for this recurrence is λ2−xλ+1.
Now let

β = β(x) =
x+
√
x2 − 4

2

and note that the roots of the characteristic polynomial are β and β−1 (the roots are
reciptricals because the constant term is 1).

Lemma:

an(x) =
βn+1 − β−n

β − 1
and bn(x) =

βn+1 + β−n

β + 1
.

Proof of Lemma:
Since these formalas for an(x) and bn(x) are both linear combinations of βn and β−n, we
simply need to verify them for n = 0 and n = 1.

β0+1 − β−0

β − 1
= 1 = a0(x) and

β0+1 + β−0

β + 1
= 1 = b0(x)

Since β is a root of λ2 − xλ+ 1, this means that β2 + 1 = xβ and thus β + β−1 = x. So

β2 − β−1

β − 1
= β + 1 + β−1 β2 + β−1

β + 1
= β − 1 + β−1

= x+ 1 = x− 1

= a1(x). = b1(x). �
Thus the Lemma is now proven. Also note that (β(x))2 = β(y) for y = x2 − 2, because

(β(x))2 =

(
x+
√
x2 − 4

2

)2

=
(x2 − 2) +

√
(x2 − 2)2 − 4

2
=
y +

√
y2 − 4

2
= β(y).

Now we use β2 = (β(x))2 = β(y) to show that an(x)bn(x) = an(y).

an(x)bn(x) =

(
βn+1 − β−n

β − 1

)(
βn+1 + β−n

β + 1

)
=

(β2)n+1 − (β2)−n

(β2 − 1)

=
(β(y))n+1 − (β(y))−n

(β(y)− 1)

= an(y).



This shows that the sequence a1(y), a2(y), a3(y), . . . cannot contain any prime numbers.
Since there are infinitely many integers of the form y = x2 − 2, we are done.

Alternative Solution: First note that (for x ≥ 3) each term in the sequence is more
than double the previous term, because

an+1 = xan − an−1 = (x− 1)an + (an − an−1) ≥ (x− 1)an ≥ 2an.

Moreover we can easily verify that an > x for all n ≥ 1 because an ≥ a1 = x + 1. Now
we prove the following Lemma.

Lemma:
a2n − an+1an−1 = x+ 2

Proof of Lemma: (by Induction)
First note that a2 = xa1 − a0 = x(x + 1) − 1. Now for the base case, we check this
expression for n = 1.

a21 − a2a0 = (x+ 1)2 − (x(x+ 1)− 1)(1) = x+ 2.

This proves the Lemma when n = 0. Now for the inductive step, we assume the Lemma
is true when n = k. Assume: a2k − ak+1ak−1 = x+ 2. Now we will use xak = ak+1 + ak−1

to simplify a2k+1 − ak+2ak.

a2k+1 − ak+2ak = a2k+1 − (xak+1 − ak)ak

= a2k+1 − xakak+1 + a2k
= a2k+1 − (ak+1 + ak−1)ak+1 + a2k
= a2k+1 − a2k+1 − ak−1ak+1 + a2k
= a2k − ak−1ak+1

= x+ 2. �
Thus that the Lemma is proven. Now lets assume that (x + 2) is a perfect square; let
x+ 2 = c2 for some integer c ≥ 3. This implies that a2n − an+1an−1 = c2. Therefore

an+1an−1 = a2n − c2 = (an + c)(an − c)

and thus (an + c)(an − c) is a multiple of an+1. We know that both factors (an + c) and
(an − c) are positive because an > x = c2 − 2 > c for all c ≥ 3.

Now suppose for the sake of contradiction that an+1 was prime. This would mean that
either (an + c) or (an − c) is a multiple of an+1. Therefore either

an+1 ≤ an + c or an+1 ≤ an − c.

Either way we get an+1 ≤ an + c. Now using an > c we obtain

an+1 ≤ an + c < an + an = 2an.

However this contradicts the fact that each term in the sequence is double the previous
term. Therefore an+1 cannot be prime (when x = c2−2) for any n ≥ 1. Finally we notice
that a0 = 1 is not prime, and a1 = x+1 = (c2−2)+1 = (c+1)(c−1) is clearly composite
for all c ≥ 3. Thus we have shown that the the sequence a0, a1, a2, . . . contains no prime
numbers whenever x is in the form x = c2 − 2 for any integer c ≥ 3.
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