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1. How many positive integers less than 2019 are divisible by either 18 or 21, but not both?

2. Find all real solutions to the equation

(x2 + 3x+ 1)x
2−x−6 = 1.

3. In triangle ABC, points D and E lie on the interior of segments AB and AC, respectively,
such that AD = 1, DB = 2, BC = 4, CE = 2 and EA = 3. Let DE intersect BC at F .
Determine the length of CF .

4. Show that the number 122n − 102n − 21n is always one less than a multiple of 2020, for
any positive integer n.

5. Find all positive integers n such that n4 − n3 + 3n2 + 5 is a perfect square.

6. Let V be the set of vertices of a regular 21-gon. Given a non-empty subset U of V , let
m(U) be the number of distinct lengths that occur between two distinct vertices in U .

What is the maximum value of m(U)
|U | as U varies over all non-empty subsets of V ?

7. Let ABCDEF be a convex hexagon containing a point P in its interior such that PABC
and PDEF are congruent rectangles with PA = BC = PD = EF (and AB = PC =
DE = PF ). Let ` be the line through the midpoint of AF and the circumcentre of PCD.
Prove that ` passes through P .

8. Suppose that x1, x2, x3, . . . xn are real numbers between 0 and 1 with sum s. Prove that

n∑
i=1

xi

s+ 1− xi

+
n∏

i=1

(1− xi) ≤ 1.
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