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1. Suppose that a, b, c and d are four different integers. Explain why

(a− b)(a− c)(a− d)(b− c)(b− d)(c− d)

must be a multiple of 12.

Solution: Let X = (a−b)(a−c)(a−d)(b−c)(b−d)(c−d). There are 4 integers a, b, c, d
but only 3 different possible remainders on division by 3. By the pigeonhole principle,
two of the integers must have the same remainder on division by 3. This means that their
difference must be a multiple of 3, and since their difference is a factor of X, this means
that X must be a multiple of 3.

Now we only need to show that X is a multiple of 4. The four integers a, b, c, d might
consist of two even and two odd numbers, or alternatively, some three or more of them
might have the same parity (meaning they are all even, or all odd). Either way, amongst
the numbers {a, b, c, d} there are at least two pairs which have the same parity; that is,
the must be at least two pairs of numbers that are both even or both odd. For each of
these pairs their difference is even, and thus X is a multiple of 4.

Since X is a multiple of 3 and a multiple of 4, X must be a multiple of 12.

2. Find all pairs of integers (a, b) such that

a2 + ab− b = 2018.

Solution: The equation rearranges and factors as (a−1)(a+ b+1) = 2017. Since 2017
is prime, it only has four factors: ±1 and ±2017. Since (a − 1) is a factor of 2017, this
means that the only possibilities for a are 2018, 2, 0 or −2016. For each of these cases
we can calculate b using b = (2018− a2)/(a− 1). So the only solutions are:

(a, b) = (2018,−2018), (2, 2014), (0,−2018), (−2016, 2014).

3. Show that amongst any 8 points in the interior of a 7 × 12 rectangle, there exists a pair
whose distance is less than 5.

Note: The interior of a rectangle excludes points lying on the sides of the rectangle.

Solution: Partition the 7 × 12 rectangle into seven disjoint 3 × 4 rectangular tiles as
shown.



By the pigeonhole principle, there exists at least one 3×4 tile containing at least 2 points.
The distance between two points in this tile is at most the length of the diagonal, which
is 5. This distance can only equal 5 if the two points lie at opposite vertices of the tile.
Since all the points are strictly in the interior of the 7× 12 rectangle, and since any pair
of opposite vertices of a tile includes at least one point on the perimeter of the 7 × 12
rectangle, this cannot happen. Therefore this distance is less than 5.

4. Let P be a point inside triangle ABC such that ∠CPA = 90◦ and ∠CBP = ∠CAP .
Prove that ∠PXY = 90◦, where X and Y are the midpoints of AB and AC respectively.

Solution: Let Z be the midpoint of AP . Since ∠CPA = 90◦ and Y is the midpoint of
AC, this means that Y is the circumcentre of 4CAP . So Y A = Y P and hence 4Y AP
is isosceles. Hence ∠Y AZ = ∠Y PZ. Notice that X, Y and Z are the midpoints of AB,
AC and AP respectively. In other words, 4XY Z is the dilation of 4BCP by a factor
of 1/2 about point A. Hence triangles XY Z and BCP are similar. Therefore

∠Y XZ = ∠CBP = ∠CAP = ∠Y AZ = ∠Y PZ.

Since ∠Y XZ = ∠Y PZ, it follows thatXPY Z is a cyclic quadrilateral. Since Y ZP = 90◦,
this means that Y P is a diameter of the circumcircle of XPY Z. Therefore ∠PXY = 90◦

as required.

A

B

C

P

Y

Z

X

5. Let a, b and c be positive real numbers satisfying

1

a+ 2019
+

1

b+ 2019
+

1

c+ 2019
=

1

2019
.

Prove that abc ≥ 40383.

Solution: Let x = a
2019

, let y = b
2019

and z = c
2019

. Substituting this into the above
equation yields:

1

x+ 1
+

1

y + 1
+

1

z + 1
= 1.

If we multiply both sides by (x+ 1)(y + 1)(z + 1), and expand and simplify, then we get
xyz = 2 + x+ y + z. From here, using the AM-GM inequality we can deduce that

xyz

4
=

2 + x+ y + z

4
≥ 4
√

2xyz.

This rearranges to give xyz ≥ 8. Therefore abc = 20193xyz ≥ 40383 as required.



6. The intersection of a cube and a plane is a pentagon. Prove the length of at least one side
of the pentagon differs from 1 metre by at least 20 centimetres.

Solution: First note that any cross section of any convex shape is convex — so the
pentagon must be convex. Also, the intersection of any plane with two opposite faces of
the cube must be a pair of parallel lines (because opposite faces of the cube are parallel
planes).

For the cross section to be a pentagon, the plane must intersect exactly 5 of the 6 sides
of the cube. In particular, there is only one face which it does not intersect. This means
that it intersects two different pairs of opposite sides of the cube. Therefore the pentagon
has two different pairs of parallel sides. We conclude that

• the pentagon is convex, and

• the pentagon has two pairs of parallel sides.

This is all we need to know about the pentagon.

Now let the pentagon be ABCDE. Without loss of generality AB||CD and BC||DE.
Assume, for the sake of contradiction that all the sides of the pentagon are between 80
and 120 (all lengths are in cm). Now let X be the the intersection of AB and DE, so
that XBCD is a parallelogram.
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We can now compute XA = XB − AB = CD − AB < 120− 80 = 40, and so XA < 40.
Similarly we must have XE < 40 also. By the triangle inequality we get

EA < EX +XA < 40 + 40 = 80.

However this contradicts the assumption that all side lengths of the pentagon are more
than 80.

7. Let N be the number of ways to colour each cell in a 2 × 50 rectangle either red or blue
such that each 2 × 2 block contains at least one blue cell. Show that N is a multiple of
325, but not a multiple of 326.

Solution: We will let an denote the number of ways to colour each cell in a 2 × n
rectangle either red or blue such that no 2 × 2 block is entirely coloured red. Note that
a1 = 22 = 4 and a2 = 24− 1 = 15. Let’s say that a 2× 1 column is hot if both cells in the
column are red, otherwise we say that the column is cold. Note that there are 3 different
types of cold column.

We will count colourings according to the number of hot columns they contain. To do
this we will use the following lemma:



Lemma. Suppose that the cells of a 1× n rectangle are coloured black and white in such
a way that no two black cells are adjacent. The number of such colourings with exactly k
black cells is

(
n−k+1

k

)
.

Proof. Given an allowable colouring with k black cells, there must be a white cell immedi-
ately to the right of each of the leftmost k−1 black cells. Deleting these gives a colouring
of a 1× (n− k+ 1) rectangle, in which there are k black cells but no other restriction on
how the cells may be coloured. Conversely, given an arbitrary colouring of a 1×(n−k+1)
rectangle that has exactly k black cells, we may obtain an allowable colouring of a 1× n
rectangle that has exactly k black cells by inserting a white cell immediately to the right
of each of the leftmost k − 1 black cells.

This establishes a bijection between allowable colourings of a 1×n rectangle with exactly
k black cells, and arbitrary colourings of a 1× (n− k + 1) rectangle with exactly k black
cells. Since there are clearly

(
n−k+1

k

)
of the latter, the lemma is proved.

Returning now to the problem, we claim that there are 3n−k
(
n−k+1

k

)
allowable colourings

of a 2× n rectangle with exactly k hot columns. To see this, note that the hot columns
may not be next to each other, so by the lemma there are

(
n−k+1

k

)
ways to choose which

columns are hot and which are cold; and then the cold columns come in three types, so
there are 3n−k ways to colour the cold columns. There can be at most bn+1

2
c hot columns,

so

an =

bn+1
2
c∑

k=0

3n−k
(
n− k + 1

k

)
.

In particular,

N = a50 =
25∑
k=0

350−k
(

51− k
k

)
= 325

25∑
k=0

325−k
(

51− k
k

)
.

This shows that N is divisible by 325. To see that it is not divisible by 326, separate out
the k = 25 term to write N in the form

N = 326

24∑
k=0

324−k
(

51− k
k

)
+ 325

(
26

25

)
.

Since
(
26
25

)
= 26 is not divisible by 3 this completes the proof.

Alternate solution. Consider the left-most column in a valid colouring of the 2 × n
rectangle.

• If the leftmost column is cold, then there are an−1 different ways to colour the rest of
the rectangle. Since there are 3 different types of cold column, we can count 3an−1
different valid colourings in this case.

• If the leftmost column is hot, then the second-left-most column must be cold, and
there are an−2 different ways to colour the rest of the rectangle. Since there are 3
different types of cold column, we can count 3an−2 different valid colourings in this
case.

It follows that
an = 3an−1 + 3an−2.

We will now show for each positive integer k, that both a2k and a2k+1 are multiples of
3k. The base case (k = 1) is trivial because both a2 = 15 and a3 = 57 are multiples



of 3. For the inductive step, let a2k = 3kx and a2k+1 = 3ky. The recurrence gives us
a2(k+1) = 3(3kx+ 3ky) = 3k+1(x+ y), and so a2(k+1) is a multiple of 3k+1. Furthermore:

a2(k+1)+1 = 3(3k+1(x+ y) + 3ky) = 3k+1(3x+ 4y).

This completes our induction. The case k = 25 tells us that 325 is a factor of N = a50.

To show that N is not divisible by 326 we now consider the sequence bn defined by

b2k = a2k/3
k, b2k+1 = a2k+1/3

k.

Our calculations above give

b2(k+1) = b2k + b2k+1, b2(k+1)+1 = 3b2k + 4b2k+1.

Considering b2(k+1)+1 modulo 3 we see that

b2(k+1)+1 ≡ 4b2k+1 ≡ b2k+1 (mod 3),

and since b1 = a1 = 4 ≡ 1 (mod 3) it follows that b2k+1 ≡ 1 (mod 3) for all k. This
means that 3k is the highest power of 3 dividing a2k+1 for all k.

Looking now at b2(k+1) modulo 3 we have

b2(k+1) = b2k + b2k+1 ≡ b2k + 1 (mod 3).

Since b2 = a2/3 = 15/3 = 5 ≡ 2 (mod 3), it follows that b2k ≡ 0 (mod 3) if and only
if k ≡ 2 (mod 3). Equivalently, 3k is the highest power of 3 dividing a2k except when
k ≡ 2 (mod 3). The case k = 25 then tells us that 325 is the highest power of 3 dividing
N = a50, so N is not divisible by 326.

8. Let λ be a line and let M,N be two points on λ. Circles α and β centred at A and B
respectively are both tangent to λ at M , with A and B being on opposite sides of λ. Circles
γ and δ centred at C and D respectively are both tangent to λ at N , with C and D being
on opposite sides of λ. Moreover A and C are on the same side of λ. Prove that if there
exists a circle tangent to all circles α, β, γ, δ containing all of them in its interior, then
the lines AC, BD and λ are either concurrent or parallel.

Solution: Assume that there exists a circle which is internally tangent to α, β, γ, δ. Let
this circle be ρ, and let R be the centre of ρ. Without loss of generality R is on the same
side of λ as A and C. Let the perpendicular distance from R to λ be h. Furthermore, let
a, b, c, d, r be the radii of circles α, β, γ, δ, ρ respectively. Since ρ is tangent to both α and
β, this means that AR = r− a and BR = r− b. Now construct point X on line AB such
that RX is perpendicular to AB (see Figure 1).

Then RX is parallel to λ, and thus AX = a− h. Pythagoras’ Theorem in triangle AXR
gives us

RX2 = RA2 − AX2 = (r − a)2 − (a− h)2 = r2 − h2 − 2a(r − h).

Similarly, we can compute RB = r− b and BX = b+ h, and so Pythagoras’ Theorem in
triangle BXR gives us

RX2 = RA2 − AX2 = (r − b)2 − (b+ h)2 = r2 − h2 − 2b(r + h).

Equating the right-hand sides of the above equations gives us a(r − h) = b(r + h) and
therefore a/b = (r + h)/(r − h). Using a similar argument we get c/d = (r + h)/(r − h),
and thus we can deduce

a

b
=
c

d
.
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Figure 1: Diagram for Problem 8.

Now if a = c then we would have b = d, and so both AC and BD are parallel to λ.
Otherwise let E be the point of intersection of AC with λ. Since triangles AME and
BNE are similar, we get

ME

NE
=
AM

BN
=
a

b
=
c

d
=
CM

DN
.

This implies that triangles CME and DNE are similar, and so C, D and E are collinear.

9. Let x, y, p, n, k be positive integers such that

xn + yn = pk.

Prove that if n > 1 is odd, and p is an odd prime, then n is a power of p.

Solution: We give a proof by contradiction. Let us assume that (x, y, p, n, k) is a tuple
of positive integers satisfying xn + yn = pk such that n > 1 is odd, p is an odd prime, and
n is not a power of p. Furthermore, let us assume that (x, y, p, n, k) is the smallest such
tuple — assume that there is no other such tuple with a smaller value of x+y+p+n+k.

Now if n were composite, then we could write n = mr with 1 < m < n such that m is
not a multiple of p. In this case we would have

xn + yn = (xm + ym)(x(r−1)m − x(r−2)mym + · · ·+ y(r−1)m) = pk.



Therefore xm + ym = pk
′

would be a power of p with k′ < k. This would mean that
(x, y, p,m, k′) would be a smaller tuple than (x, y, p, n, k), which is a contradiction. There-
fore n cannot be composite, which means that n must be a prime different to p. In
particular, this means that n is not a multiple of p.

Now if either one of x or y were a multiple of p, then the other one would have to be too,
and so

xn + yn = pn ((x/p)n + (y/p)n) .

If this were the case then (x/p, y/p, p, n, k) would be a smaller tuple than (x, y, p, n, k).
Hence we can assume that neither x nor y is a multiple of p.

Now consider the factorisation:

xn + yn = (x+ y)(xn−1 − xn−2y + xn−3y2 − xn−4y3 + · · ·+ yn−1).

This means that x + y is a power of p, and since both are positive integers, we know
y ≡ −x (mod p). Considering the other factor modulo p gives us

xn−1 − xn−2y + xn−3y2 − xn−4y3 + · · ·+ yn−1

≡ xn−1 − xn−2(−x) + xn−3(−x)2 − xn−4(−x)3 + · · ·+ (−x)n−1

= nxn−1.

Since neither x nor n are multiples of p, this factor is not a multiple of p, which is a
contradiction. This completes the proof

10. Find all functions f : R −→ R such that

f(x)f(y) = f(xy + 1) + f(x− y)− 2

for all x, y ∈ R.

Solution: Substituting y = 0 into the equation gives us (f(0)− 1)f(x) = f(1)− 2. So
if f(0) 6= 1, then f(x) = (f(1) − 2)/(f(0) − 1) and so the function would be constant.
However, since λ2 = 2λ − 2 has no real solutions, the function cannot be constant.
Therefore f(0) = 1, which in turn implies that f(1) = 2. Also note that f must be an
even function because

f(x− y) = f(x)f(y)− f(xy + 1) + 2 = f(y − x).

Now set f(x) = 1 + x2 + g(x), for some even function g : R −→ R, with g(0) = g(1) = 0.
The functional equation given in the problem now simplifies to

g(x)g(y) + (x2 + 1)g(y) + (y2 + 1)g(x) = g(xy + 1) + g(x− y) ∀ x, y ∈ R. (1)

For each real number x, let us define P(x) to be the following (two-sided) sequence:

P(x) = {. . . , g(x− 2), g(x− 1), g(x), g(x+ 1), g(x+ 2), . . .}.

If we substitute y = 1 into equation (1), we get g(x + 1)− g(x) = g(x)− g(x− 1). This
means that P(x) is always an arithmetic progression. We can also substitute y = −x and
y = x to get

g(x2 + 1) + g(0) = g(x)2 + 2(x2 + 1)g(x)

and g(1− x2) + g(2x) = g(x)g(−x) + (x2 + 1)(g(x) + g(−x)).



Since g is even, the right-hand sides of the above two equations are equal. Equating the
left-hand sides gives us

g(x2 + 1)− g(x2 − 1) = g(2x) ∀x ∈ R. (2)

Now let us assume for the sake of contradiction that there exists some real a such that
g(a) 6= 0. By Equation (2) this means that the arithmetic progression P(a2/4) has a
non-zero constant difference. Hence the value of g(a2/4 + i) is arbitrarily large (in both
the positive and negative directions) as i ranges over all integers. Hence there exists some
real number b = a2/4 + i such that g(b) < 8. By Equation (2) this means that P(b2/4) is
an arithmetic progression with common difference less than −50. Therefore there exists
some c = b2/4 + i such that

1 < c < 2 and g(c− 1)− 4 > g(c) > g(c+ 1) + 4.

Now substituting x =
√
c into Equation (2) we get g(2

√
c) = g(c + 1) − g(c − 1) < −8.

Therefore 2
√
c is a real number between 2 and 2

√
2, such that g(2

√
c) < −8. Now let d

be the real number such that d2 + 1 = 2
√
c, and substitute x = y = d into Equation (1)

to get (
g(d) + d2 + 1

)2
= g(d2 + 1) + (d2 + 1)2 = g(2

√
c) +

(
2
√
c
)2
< −8 + 8 = 0.

This is a contradiction. We conclude that g is identically 0, and hence that f(x) = x2 + 1
for all x.
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