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1. Suppose that every point in the plane is coloured either black or white. Must there be an
equilateral triangle such that all of its vertices are the same colour?

Solution: Yes there must be such a triangle. In fact consider any colouring and any
10 points in the plane arranged in a grid of equilateral triangles as below:

A
B

C

D

E

F

G

Consider first the points ABC – obviously if all three are the same colour we’ve found
a triangle. Otherwise two must be of the same colour, and third a different colour.
By moving the triangular grid around a bit (including possibly a rotation) and possibly
switching colours, we can assume that A and B are black and C is white. Now if D is
black we have a black triangle ABD. If D is white, then if E is white we have a white
triangle CDE, so E must be black. Now B and E are black, so if F is black we have a
black triangle BEF , so F must be white. But now G is part of two triangles ABG where
A and B are black and CFG where C and F are white – so no matter its colour we have
a triangle with all its vertices of the same colour.

Alternative: First we argue that there must be three equally spaced points on a line (like
A, B and E) of the same colour. To see this, take a line, and take two points (say X and
Y ) on it of the same colour (say black). If their midpoint is black we’ve got the three
points we want. Otherwise consider the two points W and Z such that X is the midpoint
of WY and Y is the midpoint of XZ). Again, if either of these is black we’re done, but
if they’re white we’re done too (with the midpoint of XY we get three white points).
Now referring to the original picture suppose ABE are all black. Then from equilateral
triangles ABC, BEF , AEG all three of C, F and G must be white or we have a black
equilateral triangle – but then we’d have a white one.

2. We consider 5 × 5 tables containing a real number in each of the 25 cells. The same
number may occur in different cells, but no row or column contains five equal numbers.
Such a table is balanced if the number in the middle cell of every row and column is the
average of the numbers in that row or column. A cell is called small if the number in that
cell is strictly smaller than the number in the cell in the very middle of the table. What
is the least number of small cells that a balanced table can have?



Solution: The answer is 3. The table below realises this.

4 4 3 4 0
4 4 3 4 0
3 3 0 3 −9
4 4 3 4 0
0 0 −9 0 −36

On the other hand consider the middle column and middle row – each must contain at
least one small element since the average is equal to the central cell, and not all elements
of a row or column can be equal. But now consider a small element in the middle column
- it is the middle cell of its row so there must be an even smaller element in its row. Thus
we certainly need at least one additional small element (giving three) and the example
above shows that this suffices.

3. Consider an equilateral triangle ABC. Let P be an arbitrary point on the shorter arc AC
of the circumcircle of ABC. Show that PB = PA + PC.

Solution: Consider the following diagram:

A C

P

B

F

Note that ∠APB = ∠CPB = 60◦ since each subtends a chord of the equilateral triangle
(and angles subtended by a common chord of a circle are equal). So triangle APB is
similar to triangle FAB, so PA/PB = FA/AB. By the same argument on the other side
of PB, PC/PB = FC/BC. So:

PA

PB
+

PC

PB
=

FA

AB
+

FC

BC
.

But BC = AB = FA + AC so the right hand side is 1 which implies PA + PC = PB.

Alternative: Ptolemy’s theorem for cyclic quadrilaterals says that

BP × AC = AB × PC + BC × AP.

But AC = AB = BC, so AC = PC + AP .

4. A quadruple (p, a, b, c) of positive integers is a karaka quadruple if



• p is an odd prime number

• a, b and c are distinct, and

• ab + 1, bc + 1 and ca + 1 are divisible by p.

(a) Prove that for every karaka quadruple (p, a, b, c) we have

p + 2 ≤ a + b + c

3
.

(b) Determine all numbers p for which a karaka quadruple (p, a, b, c) exists with

p + 2 =
a + b + c

3
.

Solution: We use the notation x|y to mean that y is divisible by x. Suppose without
loss of generality that a < b < c. None of a, b or c can be divisible by p. On the other
hand

p|(bc + 1)− (ab + 1)

p|bc− ab

p|b(c− a)

Since b is not a multiple of p and p is prime, p|c− a. Similarly p|b− a. So b = a+ jp and
c = a + kp for some positive integers j < k. Therefore

a + b + c

3
= a +

(
j + k

3

)
p ≥ a + p

so we will have the result we want unless a = 1, b = p + 1, c = 2p + 1. But then
ab + 1 = p + 2 and since p is an odd prime, that’s not divisible by p.

For the second half notice that the same argument shows that for equality to hold we
must have a = 2, b = p+ 2, c = 2p+ 2. Then ab+ 1 = 2p+ 5 and for this to be a multiple
of p we need p = 5. It’s easy to check that p = 5 satisfies the given conditions as well.

5. Find all polynomials P (x) with real coefficients such that the polynomial

Q(x) = (x + 1)P (x− 1)− (x− 1)P (x).

is constant.

Solution: Obviously any constant polynomial P (x) = c has this property. So suppose
that we have a polynomial P (x) of degree n ≥ 1 with the property. Let P (x) = axn +
bxn−1 + R(x) where a 6= 0 and R(x) is a polynomial of degree less than n− 1. Consider
the coefficient of xn in Q(x). Since the term R(x) cannot produce such a coefficient, it is
the same as the coefficient of xn in:

(x + 1)(a(x− 1)n + b(x− 1)n−1 − (x− 1)(axn + bxn−1).



This is easily computed to be:

(−na + a + b)− (−a + b) = (−n + 2)a.

So, for Q(x) to be constant in this case we must have n = 2, i.e., P (x) is a quadratic.
Finally considering P (x) = ax2 + bx+ c we can check that Q(x) is constant only if a = b.

That is, the polynomials P (x) with the given property are all those of the form ax2+ax+c
for any real numbers a (including 0) and c.

6. Altitudes AD and BE of an acute triangle ABC intersect at H. Let P 6= E be the point
of tangency of the circle with radius HE centred at H with its tangent line going through
point C, and let Q 6= E be the point of tangency of the circle with radius BE centred at B
with its tangent line going through C. Prove that the points D, P and Q are collinear.

Solution: If AC = BC then D = P and there is nothing to prove so assume throughout
that AC 6= BC. There are two possible configurations depending on whether AC < BC
or AC > BC. The diagram for the first one is given below, and the argument refers to
that configuration. If AC > BC then P lies between D and Q but essentially the same
argument still applies (modulo some sign changes).

A
B

C

D

E
H

P

Q

Since ∠HPC = ∠HDC = 90◦, CHPD all lie on the circle with diameter CH. Therefore
∠HPD = 180◦ − ∠HCD. Also

∠CPD = ∠HPD − ∠HPC

= (180◦ − ∠HCD)− 90◦

= 90◦ − ∠HCD.

Now PC = CQ so ∠CPQ = 90◦ − ∠PCQ/2. But ∠PCQ = ∠ECQ − ∠ECP =
2∠ECD − 2∠ECH. So

∠CPQ = 90◦ − (∠ECD − ∠ECH) = 90◦ − ∠HCD.



Since ∠CPD = ∠CPQ, the points P , D and Q are collinear.

7. Find all positive integers n for which the equation

(x2 + y2)n = (xy)2016

has positive integer solutions.

Solution: Suppose that we have a solution (x, y) for some value of n. Let d = gcd(x, y)
and say x = ad, y = bd. Since xy ≤ x2 + y2, n ≤ 2016 Then:

(a2 + b2)n = (ab)2016d4032−2n

So a and b are both divisors of the left hand side, but are relatively prime to the left hand
side – this is only possible if a = b = 1. Thus we have:

2n = d4032−2n.

Conversely, if we have a solution to this equation, then x = y = d is a solution to the
original. So d = 2k for some k and

n = k(4032− 2n)

n =
4032k

2k + 1

So 2k + 1 is an odd divisor of 4032 = 64 × 63 (since k and 2k + 1 are relatively prime).
Going through the cases gives n must be one of 1344, 1728, 1792, 1920, or 1984.

8. Two positive integers r and k are given as is an infinite sequence of positive integers
a1 ≤ a2 ≤ a3 ≤ · · · such that r

ar
= k + 1. Prove that there is a positive integer t such that

t
at

= k.

Solution: Proof by Contradiction. Assume that at 6= t/k for all t. i.e. ak 6= 1 and
a2k 6= 2 and a3k 6= 3 and so on. However, since (an) is an increasing sequence of positive
integers, so this means

ak ≥ 2 and a2k ≥ 3 and a3k ≥ 4 and so on.

Now let ar = x (which is an integer). Therefore

axk ≥ x + 1 = ar + 1.

Since (an) is an increasing sequence, this implies that xk > r. However this contradicts
the fact that x = r

k+1
.

9. An n-tuple (a1, a2 . . . , an) is occasionally periodic if there exist a non-negative integer i
and a positive integer p satisfying i + 2p ≤ n and ai+j = ai+j+p for every j = 1, 2, . . . , p.
Let k be a positive integer. Find the least positive integer n for which there exists an
n-tuple (a1, a2 . . . , an) with elements from the set {1, 2, . . . , k}, which is not occasionally
periodic but whose arbitrary extension (a1, a2, . . . , an, an+1) is occasionally periodic for any
an+1 ∈ {1, 2, . . . , k}.



Solution: We claim that the shortest such sequence has length n = 2k − 1. Note that
a sequence is occasionally periodic if it has a repeated block (of at least one character) in
it somewhere, i.e., is of the form X,B,B, Y where X, B and Y are themselves sequences.
If a sequence (using the elements 1 through k) is not occasionally periodic, but extending
it by one character always is then the repeated block must always occur at the end of the
extended sequence.

We can construct sequences of length 2k−1 inductively, start with A1 = 1 and then given
a sequence Ak−1 using the numbers 1 through k− 1, extend it to Ak = Ak−1, k, Ak−1. So:

A1 = 1

A2 = 2, 1, 2

A3 = 2, 1, 2, 3, 2, 1, 2

A4 = 2, 1, 2, 3, 2, 1, 2, 4, 2, 1, 2, 3, 2, 1, 2

· · ·

Extending by k gives repeated blocks Ak−1, k while extending by a smaller element gives
a repeated block at the end of Ak−1. There can be no other repeated blocks since k only
occurs once and (inductively) there are no blocks within Ak−1.

To prove that no longer sequences of this type are possible we consider a weaker condition
- namely we just consider sequences whose one character extensions have a repeated block
at the end. We claim that the shortest such sequences (and hence certainly the shortest
sequences of the type we are interested in) have length 2k − 1. Proceeding by induction
again this is obviously true for k = 1. Now suppose we have a shortest such sequence,
S, on the characters 1 through k. For different extensions i and j the blocks at the end
must differ, i.e., if S, i = X,Bi, i, Bi, i and S, j = Y,Bj, j, Bj, j then for i 6= j, Bi 6= Bj (if
they were equal the preceding character in the original sequence would be both i and j).
Since the names of the characters don’t matter, let’s suppose that extending by k gives
the longest possible repeated block: S = X,B, k,B. Because the other blocks are all
shorter than B, no character in X occurs in any repeated block, so because S is shortest,
X must be empty, i.e., S = B, k,B. Furthermore, let B′ be the result of deleting all the
k characters from B. Then it is easy to see that B′ extended by any character from 1
through k − 1 ends in a repeated block (just extend B by the same character, find the
repeated block we know exists there, and delete all the k’s from it.) So the length of
B′ (and hence the length of B) is at least 2k−1 − 1 by the inductive hypothesis, and the
length of S is at least 2× (2k−1 − 1) + 1 = 2k − 1.


